Abstract

The progressively improved heterobimetallic antimony transition metal complex PSbP-Pt (I1) provides superior activity in catalyzed 1,6-enyne cycloisomerization. Our DFT calculations demonstrate that the noninnocent character of the antimony ligand enhances the self-activation of the catalyst precursor through a substrate-aided intramolecular chloride migration, which triggers subsequent reaction. Designed alternative redox noninnocent active species with strong electron-withdrawing groups also show promising catalytic ability due to an electron-deficient antimony ligand, which lowers the typical reaction barrier for the cycloisomerization of 1,6-enyne.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.