Abstract
AbstractA novel bismuth(III) trifluoro‐methanesulfonate‐catalyzed and environmentally benign synthetic strategy for the construction of a wide range of structurally diverse, sophisticated [5,6,5]‐oxygen‐containing tricyclic frameworks with easy‐to handle propargylic alcohols and 2‐allylphenols as substrates in the presence of Bi(OTf)3 and AgOTf is described. This Lewis acid catalyzed [3+2] annulation protocol, which tolerates a great deal of functional groups, proceeds through a sequential Meyer‐Schuster rearrangement, nucleophilic substitution, 5‐exo‐trig cyclization, 5‐endo‐trig cyclization, and proton exchange sequences, affording a versatile approach for accessing oxygen‐containing tricyclic skeletons in moderate‐to‐excellent yields. In addition, most of the obtained compounds exhibited anti‐tumor activities against three types of human cancer cell lines in vitro, including Caco‐2 colon cancer cells, MCF‐7 breast cancer cells, and Hepg‐2 liver cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.