Abstract

AbstractPoly (vinylidene fluoride‐co‐hexafluoropropylene) P(VDF‐co‐HFP) is an excellent material for polymer electrolytes of lithium ion battery. To enhance the lithium ion transference number, some metal oxides were often embedded into P(VDF‐co‐HFP). The promising mechanism for the increase in lithium ionic conductivity was Lewis acid‐base theory. In this experiment, the Lewis acid–base properties of P(VDF‐co‐HFP) were measured by inverse gas chromatography (IGC). The Lewis acid constant Ka of P(VDF‐co‐HFP) is 0.254, and the base constant Kb is 1.199. Compared with other polymers characterized by IGC, P(VDF‐co‐HFP) is the strongest Lewis basic polymers. Except aluminum ion, lithium ion is the strongest Lewis acidic ion according to their η value of Lewis acids. Therefore, a strong Lewis acid–base interaction will exist between lithium ion and P(VDF‐co‐HFP). This will restrict the transference of lithium ion in P(VDF‐co‐HFP). To enhance the lithium ion transference by blending other metal ions into P(VDF‐co‐HFP), it is suggested that the preferential ions should be Al3+, Mg2+, Na+, and Ca2+ because these metal ions have relative large η values. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call