Abstract

The oxadi-π-methane rearrangement of 2,4-cyclohexadienones to bicyclic ketones was found to proceed with high enantioselectivity (92–97% ee) in the presence of catalytic amounts of a chiral Lewis acid (15 examples, 52–80% yield). A notable feature of the transformation is the fact that it proceeds on the singlet hypersurface and that no triplet intermediates are involved. Rapid racemic background reactions were therefore avoided, and the catalyst loading could be kept low (10 mol %). Computational studies suggest that the enantioselectivity is determined within a Lewis acid bound singlet intermediate via a conical intersection. The utility of the method was demonstrated by a concise synthesis of the natural product trans-chrysanthemic acid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.