Abstract
Tetrahedral Sn built into microporous silica frameworks such as zeolites and structured mesoporous silica can be used as heterogeneous Lewis acid catalysts. These materials have recently attracted much attention, as they show remarkable activity and selectivity in a wide range of reactions. A prominent example is the conversion of carbohydrates into platform and commodity chemicals such as lactic acid or alkyl lactates, where the activity and selectivity of Sn-based materials remains unsurpassed compared to Sn-free catalysts. Some of the materials show water-tolerant behavior and can therefore also be used in aqueous systems. In this work, a literature overview regarding synthesis of Sn-containing silica materials is given, as well as a synopsis of the characterization tools which can be used to unravel the structure of the catalytic active site. The application of such Sn-containing materials for diverse catalytic reactions is reviewed, with special emphasis on the effects of the catalyst characteristics on the catalytic activity and stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.