Abstract

The chemical strategies used by ribozymes to enhance reaction rates are revealed in part from their metal ion and pH requirements. We find that kinase ribozyme K28(1-77)C, in contrast with previously characterized kinase ribozymes, requires Cu2+ for optimal catalysis of thiophosphoryl transfer from GTPγS. Phosphoryl transfer from GTP is greatly reduced in the absence of Cu2+, indicating a specific catalytic role independent of any potential interactions with the GTPγS thiophosphoryl group. In-line probing and ATPγS competition both argue against direct Cu2+ binding by RNA; rather, these data establish that Cu2+ enters the active site within a Cu2+•GTPγS or Cu2+•GTP chelation complex, and that Cu2+•nucleobase interactions further enforce Cu2+ selectivity and position the metal ion for Lewis acid catalysis. Replacing Mg2+ with [Co(NH3)6]3+ significantly reduced product yield, but not kobs, indicating that the role of inner-sphere Mg2+ coordination is structural rather than catalytic. Replacing Mg2+ with alkaline earths of increasing ionic radii (Ca2+, Sr2+ and Ba2+) gave lower yields and approximately linear rates of product accumulation. Finally, we observe that reaction rates increased with pH in log-linear fashion with an apparent pKa = 8.0 ± 0.1, indicating deprotonation in the rate-limiting step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call