Abstract
In this article, an analytical approach for buckling analysis of thick functionally graded rectangular plates is presented. The equilibrium and stability equations are derived according to the higher-order shear deformation plate theory. Introducing an analytical method, the coupled governing stability equations of functionally graded plate are converted into two uncoupled partial differential equations in terms of transverse displacement and a new function, called boundary layer function. Using Levy-type solution these equations are solved for the functionally graded rectangular plate with two opposite edges simply supported under different types of loading conditions. The excellent accuracy of the present analytical solution is confirmed by making some comparisons of the present results with those available in the literature. Furthermore, the effects of power of functionally graded material, plate thickness, aspect ratio, loading types and boundary conditions on the critical buckling load of the functionally graded rectangular plate are studied and discussed in details. The critical buckling loads of thick functionally graded rectangular plates with various boundary conditions are reported for the first time and can be used as benchmark.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.