Abstract

Let A be a nonassociative algebra. We let An denote the subalgebra generated by all products of n elements from A. Inductively we define A(0) = A and A(n+1) = (A(n))2. We say that A is nilpotent if, for some n, An = {0}. A is solvable if A(n) = {0} for some n. An algebra is locally nilpotent (locally solvable) if each finitely generated subalgebra is nilpotent (solvable). In this paper will always be some variety of algebras defined by a set of homogeneous identities. We say that local nilpotence is a radical property in if each contains a maximal locally nilpotent ideal L and A/L has no non-zero locally nilpotent ideals. The ideal L is then called the Levitzki radical of A.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.