Abstract
Let $X$ be a real reflexive Banach space. In this paper, we first introduce the concept of Levitin-Polyak well-posedness of a completely generalized mixed variational inequality in $X$, and establish some characterizations of its Levitin-Polyak well-posedness. Under suitable conditions, we prove that the Levitin-Polyak well-posedness of a completely generalized mixed variational inequality is equivalent both to the Levitin-Polyak well-posedness of a corresponding inclusion problem and to the Levitin-Polyak well-posedness of a corresponding fixed point problem. We also derive some conditions under which a completely generalized mixed variational inequality in $X$ is Levitin-Polyak well-posed. Our results improve, extend and develop the early and recent ones in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.