Abstract

Chemical reactions that occur in droplets proceed much differently compared to bulk phases. For instance, many groups have studied droplets during levitation by mass spectrometry and fluorescence to gain more detailed mechanistic insight. Such droplets maximize the probability of solution species interacting with the solution-air interface, an interface that is inherently difficult to probe electrochemically. In this Technical Note, we overcome this limitation by developing a laser-pulled dual-barrel electrode. Having two microwires sealed within the same glass capillary allows one to make two-electrode measurements. We show that the electrode can be positioned within a levitating water droplet and that the voltammetry of a redox indicator (hexacyanoferrate (II/III)) can be observed in real-time. Such foundational measurement tools are important to probe a variety of chemical reactions at complex interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call