Abstract

Optically trapped nanoparticles can be used to explore heat conduction in gases. Heat conduction can be modeled using Fourier’s law when the mean-free path (MFP) of the gas molecules is short compared to the size of the heat source. When the MFP of the gas is larger than the size of the heated nanoparticle a nanoscopic approach which considers the gas’s interactions is needed. We use nanodiamonds with nitrogen-vacancy centers to measure the temperature of a trapped nanoparticle and observe both continuum (Fourier) and sub-continuum regions of heat conduction and the transition between them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.