Abstract

In this paper, we study connections on hermitian modules, and show that metric connections exist on regular hermitian modules; i.e. finitely generated projective modules together with a non-singular hermitian form. In addition, we develop an index calculus for such modules, and provide a characterization in terms of the existence of a pseudo-inverse of the matrix representing the hermitian form with respect to a set of generators. As a first illustration of the above concepts, we find metric connections on the fuzzy sphere. Finally, the framework is applied to a class of noncommutative minimal surfaces, for which there is a natural concept of torsion, and we prove that there exist metric and torsion free connections for every minimal surface in this class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.