Abstract

Untargeted metabolomics using liquid chromatography-electrospray ionization-high-resolution tandem mass spectrometry (UPLC-ESI-MS/MS) provides comprehensive insights into the dynamic changes of metabolites in biological systems. However, numerous unidentified metabolic features limit its utilization. In this study, a novel approach, the Chemical Classification-driven Molecular Network (CCMN), was proposed to unveil key metabolic pathways by leveraging hidden information within unidentified metabolic features. The method was demonstrated by using the herbivore-induced metabolic response in corn silk as a case study. Untargeted metabolomics analysis using UPLC-MS/MS was performed on wild corn silk and two genetically modified lines (pre- and postinsect treatment). Global annotation initially identified 256 (ESI-) and 327 (ESI+) metabolites. MS/MS-based classifications predicted 1939 (ESI-) and 1985 (ESI+) metabolic features into the chemical classes. CCMNs were then constructed using metabolic features shared classes, which facilitated the structure- or class annotation for completely unknown metabolic features. Next, 844/713 significantly decreased and 1593/1378 increased metabolites in ESI-/ESI+ modes were defined in response to insect herbivory, respectively. Method validation on a spiked maize sample demonstrated an overall class prediction accuracy rate of 95.7%. Potential key pathways were prescreened by a hypergeometric test using both structure- and class-annotated differential metabolites. Subsequently, CCMN was used to deeply amend and uncover the pathway metabolites deeply. Finally, 8 key pathways were defined, including phenylpropanoid (C6-C3), flavonoid, octadecanoid, diterpenoid, lignan, steroid, amino acid/small peptide, and monoterpenoid. This study highlights the effectiveness of leveraging unidentified metabolic features. CCMN-based key pathway analysis reduced the bias in conventional pathway enrichment analysis. It provides valuable insights into complex biological processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call