Abstract

Complex interactions between noncoordinating residues are significant yet commonly overlooked components of macromolecular catalyst function. While these interactions have been demonstrated to impact binding affinities and catalytic rates in metalloenzymes, the roles of similar structural elements in synthetic polymeric catalysts remain underexplored. Using a model Suzuki-Miyuara cross-coupling reaction, we performed a series of systematic studies to probe the interconnected effects of metal-ligand cross-links, electrostatic interactions, and local rigidity in polymer catalysts. To achieve this, a novel bifunctional triphenylphosphine acrylamide (BisTPPAm) monomer was synthesized and evaluated alongside an analogous monofunctional triphenylphosphine acrylamide (TPPAm). In model copolymer catalysts, increased initial reaction rates were observed for copolymers untethered by Pd complexation (BisTPPAm-containing) compared to Pd-cross-linked catalysts (TPPAm-containing). Further, incorporating local rigidity through secondary structure-like and electrostatic interactions revealed nonmonotonic relationships between composition and the reaction rate, demonstrating the potential for tunable behavior through secondary-sphere interactions. Finally, through rigorous cheminformatics featurization strategies and statistical modeling, we quantitated relationships between chemical descriptors of the substrate and reaction conditions on catalytic performance. Collectively, these results provide insights into relationships among the composition, structure, and function of protein-mimetic catalytic copolymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.