Abstract

Chemotaxis is the directional movement of cells in response to a chemical stimulus and is vital for many physiological processes, including immune responses, tumor metastasis, wound healing, and blood vessel formation. Therefore, modulation of chemotaxis is likely to be of therapeutic benefit. Hence, a high-throughput means to conduct chemotaxis assays is advantageous for lead evaluation and optimization in drug discovery. In this study, we have validated a novel approach for a higher-throughput, label-free, image-based IncuCyte chemotaxis assay encompassing various cell types, including T cells, B cells, mouse Th17, immature and mature dendritic cells, monocyte THP-1, CCRF-CEM, monocytes, neutrophils, macrophages, and MDA-MB-231. These assays enable us to visualize chemotactic cell migration in real time and perform kinetic cell motility studies on an automated platform, thereby allowing us to incorporate the quantitative studies of cell migration behavior into a routine drug discovery screening cascade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call