Abstract
AbstractDespite the broad range of Machine Learning (ML) algorithms, there are no clear guidelines on how to identify the optimal algorithm and corresponding hyperparameters configurations given an Opinion Mining (OM) problem. In ML, this is known as the Algorithm Selection Problem (ASP). Although Automatic Algorithm Selection or AutoML has proven to be successful in many areas of ASP, it has hardly been explored in OM. This paper explores the benefits of using AutoML in this field. To this end, this work examines to what extent AutoML can be competitive against ad hoc methods (manually select and tune ML pipelines) on Arabic opinion mining modeled from a supervised learning perspective. We compare four state-of-the-art AutoML tools on 10 different popular datasets to human performance. Experimental results show that the AutoML technology can be considered as a powerful approach to support the ML algorithm selection problem in opinion mining.KeywordsAutoMLMachine learningOpinion miningAutoML benchmarkArabic text
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.