Abstract

Hybrid epoxide–acrylate photopolymerization enables the temporal structuring of polymer networks for advanced material properties. The ability to design polymer network architectures and to tune mechanical properties can be realized through the control of the cationic active center propagation reaction (active chain end mechanism) relative to the cationic chain transfer reaction (activated monomer mechanism). Grafted polymer networks (GPNs) can be developed through the covalent bonding of epoxide chains to acrylate chains through hydroxyl substituents, making hydroxyl-containing acrylates a promising class of chain transfer agents. This work demonstrates the formation of these GPNs and explores the physical properties obtained through the control of hydroxyl content and hybrid formulation composition. The GPNs exhibit a lower glass transition temperature than the neat epoxide network and result in a more homogeneous network. Further investigations of hydroxyl-containing acrylates as chain transfer agents will generate a wider range of physical property options for photopolymerized hybrid coatings, sealants, and adhesives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.