Abstract
Multipole (MTP) electrostatics provides the means to describe anisotropic interactions in a rigorous and systematic manner. A number of earlier molecular dynamics (MD) implementations have increasingly relied on the use of molecular symmetry to reduce the (possibly large) number of MTP interactions. Here, we present a CHARMM implementation of MTP electrostatics in terms of spherical harmonics. By relying on a systematic set of reference-axis systems tailored to various chemical environments, we obtain an implementation that is both efficient and scalable for (bio)molecular systems. We apply the method to a series of halogenated compounds to show (i) energy conservation; (ii) improvements in reproducing thermodynamic properties compared to standard point-charge (PC) models; (iii) performance of the code; and (iv) better stabilization of a brominated ligand in a target protein, compared to a PC force field. The implementation provides interesting perspectives toward a dual PC/MTP resolution, à la QM/MM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.