Abstract

Quality control and system suitability testing are vital protocols implemented to ensure the repeatability and reproducibility of data in mass spectrometry investigations. However, mass spectrometry imaging (MSI) analyses present added complexity since both chemical and spatial information are measured. Herein, we employ various machine learning algorithms and a novel quality control mixture to classify the working conditions of an MSI platform. Each algorithm was evaluated in terms of its performance on unseen data, validated with negative control data sets to rule out confounding variables or chance agreement, and utilized to determine the necessary sample size to achieve a high level of accurate classifications. In this work, a robust machine learning workflow was established where models could accurately classify the instrument condition as clean or compromised based on data metrics extracted from the analyzed quality control sample. This work highlights the power of machine learning to recognize complex patterns in MSI data and use those relationships to perform a system suitability test for MSI platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.