Abstract
Handwritten character recognition has continually been a fascinating field of study in pattern recognition due to its numerous real-life applications, such as the reading tools for blind people and the reading tools for handwritten bank cheques. Therefore, the proper and accurate conversion of handwriting into organized digital files that can be easily recognized and processed by computer algorithms is required for various applications and systems. This paper proposes an accurate and precise autonomous structure for handwriting recognition using a ShuffleNet convolutional neural network to produce a multi-class recognition for the offline handwritten characters and numbers. The developed system utilizes the transfer learning of the powerful ShuffleNet CNN to train, validate, recognize, and categorize the handwritten character/digit images dataset into 26 classes for the English characters and ten categories for the digit characters. The experimental outcomes exhibited that the proposed recognition system achieves extraordinary overall recognition accuracy peaking at 99.50% outperforming other contrasted character recognition systems reported in the state-of-art. Besides, a low computational cost has been observed for the proposed model recording an average of 2.7 (ms) for the single sample inferencing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.