Abstract

AbstractThe representation and exploitation of semantics has been gaining popularity in recent research, as exemplified by the uptake of large language models in the field of Natural Language Processing (NLP) and knowledge graphs (KGs) in the Semantic Web. Although KGs are already employed in manufacturing to integrate and standardize domain knowledge, the generation and application of corresponding KG embeddings as lean feature representations of graph elements have yet to be extensively explored in this domain. Existing KGs in manufacturing often focus on top-level domain knowledge and thus ignore domain dynamics, or they lack interconnectedness, i.e., nodes primarily represent non-contextual data values with single adjacent edges, such as sensor measurements. Consequently, context-dependent KG embedding algorithms are either restricted to non-dynamic use cases or cannot be applied at all due to the given KG characteristics. Therefore, this work provides an overview of state-of-the-art KG embedding methods and their functionalities, identifying the lack of dynamic embedding formalisms and application scenarios as the key obstacles that hinder their implementation in manufacturing. Accordingly, we introduce an approach for dynamizing existing KG embeddings based on local embedding reconstructions. Furthermore, we address the utilization of KG embeddings in the Horizon2020 project Teaming.AI (www.teamingai-project.eu.) focusing on their respective benefits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.