Abstract

RTE is a significant problem and is a reasonably active research community. The proposed research works on the approach to this problem are pretty diverse with many different directions. For Vietnamese, the RTE problem is moderately new, but this problem plays a vital role in natural language understanding systems. Currently, methods to solve this problem based on contextual word representation learning models have given outstanding results. However, Vietnamese is a semantically rich language. Therefore, in this paper, we want to present an experiment combining semantic word representation through the SRL task with context representation of BERT relative models for the RTE problem. The experimental results give conclusions about the influence and role of semantic representation on Vietnamese in understanding natural language. The experimental results show that the semantic-aware contextual representation model has about 1% higher performance than the model that does not incorporate semantic representation. In addition, the effects on the data domain in Vietnamese are also higher than those in English. This result also shows the positive influence of SRL on RTE problem in Vietnamese.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.