Abstract
Restaurant health inspections aim at identifying health violations and shall reduce the risk that restaurant visitors suffer from foodborne illness. Nevertheless, regulatory authorities' resources are limited, so an efficient mechanism that supports scheduling of health inspections is necessary. We build upon information efficiency theory and investigate whether information extracted from online review platforms is useful to predict restaurant health violations. Furthermore, we examine how the expectation disconfirmation bias impacts classification performance. Analyzing a large sample of health inspections, corresponding online reviews and restaurant visitor data, we propose and evaluate different predictive models. We find that classifiers specifically taking into account information from online review platforms outperform different baseline approaches. We thus show that online reviews encompass private information indicating strong information efficiency. Furthermore, we observe that the expectation disconfirmation bias has an influence on classification performance in case of restaurants with a low star rating and with a poor inspection history. An ensemble classifier can help to mitigate this influence. Thus, online review platforms contain relevant information to predict future health violations. Our results are highly relevant for regulatory authorities, restaurant visitors and restaurant owners.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.