Abstract

Detecting unstable periodic orbits (UPOs) based solely on time series is an essential data-driven problem, attracting a great deal of attention and arousing numerous efforts, in nonlinear sciences. Previous efforts and their developed algorithms, though falling into a category of model-free methodology, dealt with the time series mostly with a regular sampling rate. Here, we develop a data-driven and model-free framework for detecting UPOs in chaotic systems using the irregularly sampled time series. This framework articulates the neural differential equations (NDEs), a recently developed and powerful machine learning technique, with the adaptive delayed feedback (ADF) technique. Since the NDEs own the exceptional capability of accurate reconstruction of chaotic systems based on the observational time series with irregular sampling rates, UPOs detection in this scenario could be enhanced by an integration of the NDEs and the ADF technique. We demonstrate the effectiveness of the articulated framework on representative examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.