Abstract

Single-cell RNA-sequencing enables testing for differential expression (DE) between conditions at a cell type level. While powerful, one of the limitations of such approaches is that the sensitivity of DE testing is dictated by the sensitivity of clustering, which is often suboptimal. To overcome this, we present miloDE—a cluster-free framework for DE testing (available as an open-source R package). We illustrate the performance of miloDE on both simulated and real data. Using miloDE, we identify a transient hemogenic endothelia-like state in mouse embryos lacking Tal1 and detect distinct programs during macrophage activation in idiopathic pulmonary fibrosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.