Abstract
Recognition of accented speech is a long-standing challenge for automatic speech recognition (ASR) systems, given the increasing worldwide population of bi-lingual speakers with English as their second language. If we consider foreign-accented speech as an interpolation of the native language (L1) and English (L2), using a model that can simultaneously address both languages would perform better at the acoustic level for accented speech. In this study, we explore how an end-to-end recurrent neural network (RNN) trained system with English and native languages (Spanish and Indian languages) could leverage data of native languages to improve performance for accented English speech. To this end, we examine pre-training with native languages, as well as multi-task learning (MTL) in which the main task is trained with native English and the secondary task is trained with Spanish or Indian Languages. We show that the proposed MTL model performs better than the pre-training approach and outperforms a baseline model trained simply with English data. We suggest a new setting for MTL in which the secondary task is trained with both English and the native language, using the same output set. This proposed scenario yields better performance with +11.95% and +17.55% character error rate gains over baseline for Hispanic and Indian accents, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.