Abstract

BackgroundLinking different sources of medical data is a promising approach to analyze care trajectories. The aim of the INSHARE (Integrating and Sharing Health Big Data for Research) project was to provide the blueprint for a technological platform that facilitates integration, sharing, and reuse of data from 2 sources: the clinical data warehouse (CDW) of the Rennes academic hospital, called eHOP (entrepôt Hôpital), and a data set extracted from the French national claim data warehouse (Système National des Données de Santé [SNDS]).ObjectiveThis study aims to demonstrate how the INSHARE platform can support big data analytic tasks in the health field using a pharmacovigilance use case based on statin consumption and statin-drug interactions.MethodsA Spark distributed cluster-computing framework was used for the record linkage procedure and all analyses. A semideterministic record linkage method based on the common variables between the chosen data sources was developed to identify all patients discharged after at least one hospital stay at the Rennes academic hospital between 2015 and 2017. The use-case study focused on a cohort of patients treated with statins prescribed by their general practitioner or during their hospital stay.ResultsThe whole process (record linkage procedure and use-case analyses) required 88 minutes. Of the 161,532 and 164,316 patients from the SNDS and eHOP CDW data sets, respectively, 159,495 patients were successfully linked (98.74% and 97.07% of patients from SNDS and eHOP CDW, respectively). Of the 16,806 patients with at least one statin delivery, 8293 patients started the consumption before and continued during the hospital stay, 6382 patients stopped statin consumption at hospital admission, and 2131 patients initiated statins in hospital. Statin-drug interactions occurred more frequently during hospitalization than in the community (3800/10,424, 36.45% and 3253/14,675, 22.17%, respectively; P<.001). Only 121 patients had the most severe level of statin-drug interaction. Hospital stay burden (length of stay and in-hospital mortality) was more severe in patients with statin-drug interactions during hospitalization.ConclusionsThis study demonstrates the added value of combining and reusing clinical and claim data to provide large-scale measures of drug-drug interaction prevalence and care pathways outside hospitals. It builds a path to move the current health care system toward a Learning Health System using knowledge generated from research on real-world health data.

Highlights

  • The secondary use of health care data offers the opportunity to conduct observational studies in real life [1,2,3]

  • As no unique patient identifier is available to link Système National des Données de Santé (SNDS) and eHOP data because of regulatory issues, we developed a semideterministic record linkage method based on PMSI variables that are common between the SNDS data source and the eHOP clinical data warehouse (CDW) data source (Figure 1)

  • We explored the association between patient characteristics or hospital stays and the occurrence of a INSHARE Overall Computing Performance

Read more

Summary

Introduction

The secondary use of health care data offers the opportunity to conduct observational studies in real life [1,2,3]. Hospital clinical data warehouses (CDWs) supply fine-grained information from electronic health records (EHRs), such as laboratory test results and drug administration, but are restricted to hospitalized patients. National claim databases offer limited information (eg, drug reimbursement and health care consumption data), but on a large part of the population. Patients existing in the 2 databases should be correctly identified using appropriate record linkage methods. The first option is deterministic record linkage that relies on the presence of a unique common identifier or a combination of different variables used as a key to join tables [4]. Several studies have demonstrated that in most cases, probabilistic approaches give better results than deterministic methods [7,8,9,10]. The aim of the INSHARE (Integrating and Sharing Health Big Data for Research) project was to provide the blueprint for a technological platform that facilitates integration, sharing, and reuse of data from 2 sources: the clinical data warehouse (CDW) of the Rennes academic hospital, called eHOP (entrepôt Hôpital), and a data set extracted from the French national claim data warehouse (Système National des Données de Santé [SNDS])

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.