Abstract
Considering each of the visual features as one modality in image annotation task, efficient fusion of different modalities is essential in graph-based learning. Traditional graph-based methods consider one node for each image and combine its visual features into a single descriptor before constructing the graph. In this paper, we propose an approach that constructs a subgraph for each modality in such a way that edges of subgraph are determined using a search-based approach that handles class-imbalance challenge in the annotation datasets. Multiple subgraphs are then connected to each other to have a supergraph. This follows by introducing a learning framework to infer the tags of unannotated images on the supergraph. The proposed approach takes advantages of graph-based semi-supervised learning and multi-modal representation simultaneously. We evaluate the performance of the proposed approach on different datasets. The results reveal that the proposed approach improves the accuracy of annotation systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.