Abstract

SMT solvers combine SAT reasoning with specialized theory solvers either to find a feasible solution to a set of constraints or to prove that no such solution exists. Linear programming (LP) solvers come from the tradition of optimization, and are designed to find feasible solutions that are optimal with respect to some optimization function. Typical LP solvers are designed to solve large systems quickly using floating point arithmetic. Because floating point arithmetic is inexact, rounding errors can lead to incorrect results, making inexact solvers inappropriate for direct use in theorem proving. Previous efforts to leverage such solvers in the context of SMT have concluded that in addition to being potentially unsound, such solvers are too heavyweight to compete in the context of SMT. In this paper, we describe a technique for integrating LP solvers that improves the performance of SMT solvers without compromising correctness. These techniques have been implemented using the SMT solver CVC4 and the LP solver GLPK. Experiments show that this implementation outperforms other state-of-the-art SMT solvers on the QF_LRA SMT-LIB benchmarks and is competitive on the QF_LIA benchmarks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.