Abstract

Ruddlesden−Popper layered oxide, La0.25Sr2.75FeNiO7-δ (LSFN) is evaluated as a potential electrode material for symmetrical solid oxide fuel cells. The in-situ formation of Ni–Fe alloy nanoparticles on the LSFN surface in reducing atmosphere can be believed to enhance the activity towards hydrogen oxidation reaction. LSFN exhibit maximum conductivity of 221.2 S/cm and 0.206 S/cm in air and hydrogen environment. Furthermore, LSFN is mixed with GDC powder to form a composite electrode for symmetric solid oxide fuel cells (SSOFC). Results show that with the combination of GDC, the maximum power density of YSZ-based SSOFC enlarges from 232.3 mW cm−2 to 348.5 mW cm−2, and related polarization resistance reduces from 0.359 Ω cm2 to 0.108 Ω cm2. The improved performance is attributed to the enlarged triple-phase boundary with the mixing of GDC. In addition, YSZ-based SSOFC with the LSFN-GDC composite electrode shows a stable performance in intermediate-temperature SSOFCs within 200 h, which indicates that LSFN-GDC composite material is a prospective symmetrical electrode for SSOFC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.