Abstract

This research illustrates the novel interposed zone of partially premixed and reactivity-controlled combustion in conjunction with injection phasing and reactivity phasing strategies to understand the performance emission and stability characteristics of a single-cylinder common rail direct injection diesel engine. However, this study determined the optimum interposed zone of operation using Response Surface Methodology (RSM). The findings indicate that raising the rate of hydrogen induction enhances the stability of interposed zone of combustion. The interposed optimum regime has a 31.58% exergy efficiency and 99.1% desirability. Compared to the similar trial run, the optimization study revealed a 45.09% reduction in Soot, a 14.29% reduction in total unburnt hydrocarbon (TUHC), and a 39.83% reduction in NOx emission levels. Thus, experimental and predicted values have been compared. Hence, this variable injection and reactivity phasing under hydrogen enrichment strategies are feasible enough to achieve the goals of advanced low-temperature combustion (LTC) concepts in an existing diesel engine without making significant design modifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call