Abstract

Recombinant adeno-associated virus (AAV) has been broadly used as a delivery tool for gene therapy applications. The development of a robust purification process is essential for delivering high purity and quality AAV products to clinic. The short clinical timelines and material limitations of early-stage development pose unique challenges to developing robust and scalable downstream purification processes. One approach to overcome these limitations is to leverage high throughput (HTP) strategies and automation technologies for purification process development, an approach that is well established in protein biologics and other areas. However, due to the unique challenges related to viral vector purification, implementing HTP approaches for gene therapy process development has not been explored extensively. In this paper, we established a HTP chromatography platform and demonstrated its capability to facilitate gene therapy purification process development using both mini-columns and self-packed resin plates. The end-to-end development workflow for AAV HTP purification is detailed in this work with the expectation of serving as an introductory for the AAV purification development field. Comparable process performance was confirmed between a bench-scale chromatography process and an HTP chromatography format. Slightly lower recovery was observed using the HTP format (62% vs 75%), as well as %full capsid enrichment (71% vs. 82%). Comparable impurity clearance capability was demonstrated between the two different systems as well. It was concluded that the established HTP chromatography formats can serve as a surrogate to bench-scale chromatography development to reduce material needs and development timelines for AAV purification development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.