Abstract

Developing fast and accurate computational models to simulate intricate physical phenomena has been a persistent research challenge. Recent studies have demonstrated remarkable capabilities in predicting various physical outcomes through machine learning-assisted approaches. However, it remains challenging to generalize current methods, usually crafted for a specific problem, to other more complex or broader scenarios. To address this challenge, we developed graph neural network (GNN) models with enhanced generalizability derived from the distinct GNN architecture and neural operator techniques. As a proof of concept, we employ our GNN models to predict finite element (FE) simulation results for three-dimensional solid mechanics problems with varying boundary conditions. Results show that our GNN model achieves accurate and robust performance in predicting the stress and deformation profiles of structures compared with FE simulations. Furthermore, the neural operator embedded GNN approach enables learning and predicting various solid mechanics problems in a generalizable fashion, making it a promising approach for surrogate modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.