Abstract

To study the effectiveness of federated learning in in vitro fertilization on embryo evaluation tasks. This is a retrospective cohort analysis. Two datasets were used in this study. The ploidy status dataset consisted of 10,065 embryo records, 3760 treatments, and 2479 infertile couples from 5 hospitals. The clinical pregnancy dataset consisted of 4495 embryo records, 4495 treatments, and 3704 infertile couples from 4 hospitals. Federated learning and the gradient boosting decision tree algorithm were utilized for modeling. On the ploidy status dataset, the areas under the receiver operating characteristic curves of our model trained with federated learning were 71.78%, 73.10%, 69.39%, 69.72%, and 73.46% for 5 hospitals respectively, showing an average increase of 2.5% compared to those of our model trained without federated learning. On the clinical pregnancy dataset, the areas under the receiver operating characteristic curves of our model trained with federated learning were 72.03%, 56.77%, 61.63%, and 58.58% for 4 hospitals respectively, showing an average increase of 3.08%. Federated learning can improve data privacy and data security and meanwhile improve the performance of embryo selection tasks by leveraging data from multiple sources. This study demonstrates the effectiveness of federated learning in embryo evaluation, and the results show the promise for future application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.