Abstract
Severe maternal morbidity (SMM) encompasses a wide range of serious health complications that would likely result in death without in-time medical attention. It has been recognized that various demographic factors (e.g., age and race) and medical conditions (e.g., preeclampsia and organ failure) are associated with SMM. However, how medical conditions develop into SMM is seldom investigated. We hypothesize that SMM has a progression path, which is associated with a sequence of risk factors rather than a set of independent individual factors. We implemented a data-driven framework that leverages electronic health records (EHRs) in the antepartum period to learn the temporal patterns and measure their relationships with SMM during the delivery hospitalization. We evaluate the framework with two years of data from 6,184 women who had delivery hospitalizations at Vanderbilt University Medical Center. We discovered 69 temporal patterns, 12 of which were confirmed to be significantly associated with SMM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.