Abstract

Despite the success of reinforcement learning methods in various simulated robotic applications, end-to-end training suffers from extensive training times due to high sample complexity and does not scale well to realistic systems. In this work, we speed up reinforcement learning by incorporating domain knowledge into policy learning. We revisit an architecture based on the mean of multiple computations (MMC) principle known from computational biology and adapt it to solve a “reacher task”. We approximate the policy using a simple MMC network, experimentally compare this idea to end-to-end deep learning architectures, and show that our approach reduces the number of interactions required to approximate a suitable policy by a factor of ten.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.