Abstract

The review discusses DNA repair deficiencies in ovarian cancer and how this has become the target for poly (ADP-ribose) polymerase (PARP) inhibition as a successful therapeutic strategy. Hereditary ovarian cancers arise from germline mutations in BRCA1, BRCA2, or other important genes in the DNA repair process of homologous recombination. Sporadic ovarian cancers can also acquire a phenotype of homologous recombination deficiency through various other mechanisms. Recent studies have found the class of drugs called PARP inhibitors to selectively target ovarian cancers with homologous recombination deficiency. There are eight PARP inhibitors in various phases of clinical development with four being actively studied in phase III trials in ovarian cancer. In December 2014, the first-in-human PARP inhibitor olaparib was approved for ovarian cancer patients with two different clinical indications in Europe and the United States. Ovarian cancer has become a model for the successful translation of targeted therapy against DNA repair deficiencies in cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.