Abstract

White blood cell image segmentation provides the opportunity for medical experts to objectively diagnose the medical conditions of patients suffering from Leukemia, for example. Due to the rigorous nature of cell image acquisition (staining process and non-uniform illumination) efficient tools must be deployed to achieve the desired segmentation result. In this paper, a deep learning model is proposed together with a grab cut. The developed deep learning model provides an initial coarse segmentation of white blood cell images. However, the objective of this segmentation is to localize or identify regions of interest from white blood cell images. A bounding is generated from the localized cell image and then used to initiate an automatic cell image segmentation using grab cut. Results of the two publicly available datasets of white blood cell images are considered satisfactory on the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.