Abstract

Laser noise usually limits the stability of optical frequency ratio measurements, limiting the speed and precision one can compare two atomic frequency standards. In this talk I will describe two methods, correlation and differential spectroscopy, which utilize correlations in laser noise to increase the achievable interrogation time and thus increase the frequency comparison stability. Correlation spectroscopy is a technique which uses a parity measurement following a synchronized Ramsey interrogation to measure the relative frequency of two similar frequency atomic clocks. With this technique we achieve a measurement instability of (4×10^(-16))⁄√(τ⁄s) for a comparison of two single 27Al+ ion clocks. Differential spectroscopy uses an atomic clock with low projection noise, here a 171Yb lattice clock, to correct the phase noise of a second, higher frequency clock’s local oscillator thereby reducing the measurement instability to the level of the first. This can be further extended using two lattice clocks in a zero dead time configuration to correct the phase noise beyond the interrogation time reachable for a single Yb lattice clock. With these techniques we achieve measurement stabilities of (2.5×10^(-16))⁄√(τ⁄s) and (2×10^(-16))⁄√(τ⁄s) for a comparison between a single 27Al+ ion clock and a 171Yb lattice clock running as single clock and in a zero dead time configuration respectively. In addition to these techniques, I will also discuss recent progress towards characterizing the systematics of the NIST 40Ca+/27Al+ optical atomic clock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.