Abstract

Subtle and profound changes in autonomic nervous system (ANS) function affecting sympathetic and parasympathetic homeostasis occur as a result of critical illness. Changes in ANS function are particularly salient in neurocritical illness, when direct structural and functional perturbations to autonomic network pathways occur and may herald impending clinical deterioration or intervenable evolving mechanisms of secondary injury. Sympathetic and parasympathetic balance can be measured quantitatively at the bedside using multiple methods, most readily by extracting data from electrocardiographic or photoplethysmography waveforms. Work from our group and others has demonstrated that data-analytic techniques can identify quantitative physiologic changes that precede clinical detection of meaningful events, and therefore may provide an important window for time-sensitive therapies. Here, we review data-analytic approaches to measuring ANS dysfunction from routine bedside physiologic data streams and integrating this data into multimodal machine learning-based model development to better understand phenotypical expression of pathophysiologic mechanisms and perhaps even serve as early detection signals. Attention will be given to examples from our work in acute traumatic brain injury on detection and monitoring of paroxysmal sympathetic hyperactivity and prediction of neurologic deterioration, and in large hemispheric infarction on prediction of malignant cerebral edema. We also discuss future clinical applications and data-analytic challenges and future directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.