Abstract

The global coastal seascape offers a multitude of ecosystem functions and services to the natural and human-induced ecosystems. However, the current anthropogenic global warming above pre-industrial levels is inducing the degradation of seascape health with adverse impacts on biodiversity, economy, and societies. Bathymetric knowledge empowers our scientific, financial, and ecological understanding of the associated benefits, processes, and pressures to the coastal seascape. Here we leverage two commercial high-resolution multispectral satellite images of the Pleiades and two multibeam survey datasets to measure bathymetry in two zones (0–10 m and 10–30 m) in the tropical Anguilla and British Virgin Islands, northeast Caribbean. A methodological framework featuring a combination of an empirical linear transformation, cloud masking, sun-glint correction, and pseudo-invariant features allows spatially independent calibration and test of our satellite-derived bathymetry approach. The best R2 and RMSE for training and validation vary between 0.44–0.56 and 1.39–1.76 m, respectively, while minimum vertical errors are less than 1 m in the depth ranges of 7.8–10 and 11.6–18.4 m for the two explored zones. Given available field data, the present methodology could provide simple, time-efficient, and accurate spatio-temporal satellite-derived bathymetry intelligence in scientific and commercial tasks i.e., navigation, coastal habitat mapping and resource management, and reducing natural hazards.

Highlights

  • Extending over 1.6 million square kilometres of coastline [1], the global seascape is front and centre in supporting Earth’s interconnected natural and human ecosystems

  • Bathymetry is a fundamental property of the global coastal seascape

  • In addition to a statistical assessment, we review the suitability of our satellite-derived bathymetry (SDB) approach in a tropical seascape environment, according to the International Hydrographic Organization’s (IHO) Category Zones of Confidence (CATZOC) depth ranges—0–10 m and 10–30 m [22]—to keep in mind the potential application of uses within navigation

Read more

Summary

Introduction

Extending over 1.6 million square kilometres of coastline [1], the global seascape (corals, seagrasses, mangroves, tidal flats) is front and centre in supporting Earth’s interconnected natural and human ecosystems. During the Anthropocene Epoch [3]—the era of significant human influence on the Earth’s climate—a projected global warming of 1.5 ◦C, and more significantly of 2.0 ◦C, above pre-industrial levels could induce detrimental and irreversible impacts on the health of the coastal seascape. This would exacerbate the risks (e.g., extreme weather events, failure of climate-change mitigation and adaptation, natural and human-made disasters, biodiversity loss and ecosystem collapse, and water crises) across biodiversity, water, food, energy, and well-being [4,5]. Instruments and sensors have been mapping bathymetry by actively, or passively, measuring sound (such as single beam (SBES) and multibeam echosounders (MBES)), or light (including satellite-derived bathymetry (SDB), Light Detection and Ranging (LiDAR), and Satellite Altimetry) [6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call