Abstract

A wide range of important problems in machine learning, expert system, social network analysis, bioinformatics and information theory can be formulated as a maximum a-posteriori (MAP) inference problem on statistical relational models. While off-the-shelf inference algorithms that are based on local search and message-passing may provide adequate solutions in some situations, they frequently give poor results when faced with models that possess high-density networks. Unfortunately, these situations always occur in models of real-world applications. As such, accurate and scalable maximum a-posteriori (MAP) inference on such models often remains a key challenge. In this paper, we first introduce a novel family of extended factor graphs that are parameterized by a smoothing parameter χ ∈ [0,1]. Applying belief propagation (BP) message-passing to this family formulates a new family of W eighted S urvey P ropagation algorithms (WSP-χ) applicable to relational domains. Unlike off-the-shelf inference algorithms, WSP-χ detects the “backbone” ground atoms in a solution cluster that involve potentially optimal MAP solutions: the cluster backbone atoms are not only portions of the optimal solutions, but they also can be exploited for scaling MAP inference by iteratively fixing them to reduce the complex parts until the network is simplified into one that can be solved accurately using any conventional MAP inference method. We also propose a lazy variant of this WSP-χ family of algorithms. Our experiments on several real-world problems show the efficiency of WSP-χ and its lazy variants over existing prominent MAP inference solvers such as MaxWalkSAT, RockIt, IPP, SP-Y and WCSP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.