Abstract

Subtle aspects of illumination sources and their characterization methods can introduce significant uncertainty into the data gathered from light-activated experiments, limiting their reproducibility and technology transition. Degradation kinetics of methyl orange (MO) and carbamazepine (CM) under illumination with TiO₂ were used as a case study for investigating the role of incident photon flux on photocatalytic degradation rates. Valerophenone and ferrioxalate actinometry were paired with optical radiometry in three different illumination systems: xenon arc (XE), tungsten halogen (W-H), and UV fluorescent (UV-F). Degradation rate constants for MO and CM varied similarly among the three light systems as k W-H < kiv-F < kXE, implying the same relative photon flux emission by each light. However, the apparent relative photon flux emitted by the different lights varied depending on the light characterization method. This discrepancy is shown to be caused by the spectral distribution present in light emission profiles, as well as absorption behavior of chemical actinometers and optical sensors. Data and calculations for the determination of photon flux from chemical and calibrated optical light characterization is presented, allowing us to interpret photo-degradation rate constants as a function of incident photon flux. This approach enabled the derivation of a calibrated ‘rate-flux’ metric for evaluating and translating data from photocatalysis studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call