Abstract

Cyber-physical system (CPS) research studies the interactions between the cyber components and the physical components of an integrated communication, computation and control system. It comprises the backbone of various critical infrastructures such as smart energy, transportation, and health care systems. Despite its wide popularity, significant security vulnerabilities exist in the prevailing CPSs. As there are many layers/components in a CPS which interact with each other frequently, it is desirable to leverage authenticated communications among them. This is why Physically Unclonable Function (PUF), which enables the challenge-response authentication scheme, has become popular. This paper proposes a new PUF design based on carbon nanotube (CNT) technologies. As fabrication induced variation manifest strongly in CNT based circuits, they are natural candidates for building highly secure PUFs. Our idea is to use a private key as the seed to generate a pseudo-random signal which will be decomposed into a set of secure pseudo-random basis using Empirical Mode Decomposition (EMD). Subsequently, the proposed PUF design works as generating a signal according to a challenge and projecting it to the above secure pseudo-random basis, resulting in the PUF output response. Clearly, the saliency of our proposed secure pseudo-random EMD projection based CNT PUF design comes from the strong variations in CNT circuits and the secure pseudo-random EMD projection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.