Abstract

The concurrent extraction of lipids, proteins, and carbohydrates can be achieved by aqueous and enzymatic extraction processes, circumventing the low extractability by mechanical pressing and the use of flammable solvents. The use of alkaline protease, preceded or not by carbohydrase pretreatments, was evaluated on the extractability of oil, protein, and carbohydrates from full-fat chickpea flour and protein functionality. Enzymatic extraction increased oil and protein extractability from 49.8 to 72.0–77.1% and 62.8 to 83.5–86.1%, respectively. Although the carbohydrase pretreatments before the addition of protease did not increase oil and protein extractability, the carbohydrate content of the extracts increased from 7.68 to 9.17−9.33 mg/mL, accompanied by the release of new oligosaccharides in the extracts, as revealed by LC–MS/MS characterization. Enzymatic extraction yielded proteins with significantly higher solubility (25.6 vs. 68.2–73.6%) and digestibility (83.8 vs. 90.79–94.67%). Treatment of the extracts with α-galactosidase completely removed the flatulence-causing oligosaccharides (stachyose and raffinose). This study highlights the effectiveness of environmentally friendly bioprocessing strategies to maximize lipid, protein, and oligosaccharide extractability from full-fat chickpea flour with concurrent improvements in protein solubility and in vitro digestibility, reduction of flatulence related oligosaccharides, and generation of a more diverse pool of oligosaccharides for subsequent prebiotic evaluation.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call