Abstract

The activation of CD8+ cytotoxic T-lymphocytes (CTLs) plays the central role in cancer immunotherapy, which depends on the efficient recognition of peptide-major histocompatibility complex (pMHC) by the T cell receptor (TCR) for the first signal, and B7-CD28 co-stimulating for the second signal. To achieve the potent immune stimulatory effect, a genetically engineered cellular membrane nanovesicles platform that integrates antigen self-presentation and immunosuppression reversal (ASPIRE) for cancer immunotherapy was designed. In preclinical mouse models, ASPIRE could markedly improve antigen delivery to lymphoid organs and generate broad-spectrum T-cell responses that eliminate established tumors. This review highlights that the ASPIRE system represents a novel strategy for personalized cancer immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call