Abstract

Bayesian deep learning (BDL) has emerged as a powerful technique for quantifying uncertainty in classification tasks, surpassing the effectiveness of traditional models by aligning with the probabilistic nature of real-world data. This alignment allows for informed decision-making by not only identifying the most likely outcome but also quantifying the surrounding uncertainty. Such capabilities hold great significance in fields like medical diagnoses and autonomous driving, where the consequences of misclassification are substantial. To further improve uncertainty quantification, the research community has introduced Bayesian model ensembles, which combines multiple Bayesian models to enhance predictive accuracy and uncertainty quantification. These ensembles have exhibited superior performance compared to individual Bayesian models and even non-Bayesian counterparts. In this study, we propose a novel approach that leverages the power of Bayesian ensembles for enhanced uncertainty quantification. The proposed method exploits the disparity between predicted positive and negative classes and employes it as a ranking metric for model selection. For each instance or sample, the ensemble's output for each class is determined by selecting the top ‘k' models based on this ranking. Experimental results on different medical image classifications demonstrate that the proposed method consistently outperforms or achieves comparable performance to conventional Bayesian ensemble. This investigation highlights the practical application of Bayesian ensemble techniques in refining predictive performance and enhancing uncertainty evaluation in image classification tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call