Abstract

Approximate Computing has emerged as an alternative way to further reduce the power consumption of integrated circuits (ICs) by trading off errors at the output with simpler, more efficient logic. So far the main approaches in approximate computing have been to simplify the hardware circuit by pruning the circuit until the maximum error threshold is met. One of the critical issues, though, is the training data used to prune the circuit. The output error can significantly exceed the maximum error if the final workload does not match the training data. Thus, most previous work typically assumes that training data matches with the workload data distribution. In this work, we present a method that dynamically overscales the supply voltage based on different workload distribution at runtime. This allows to adaptively select the supply voltage that leads to the largest power savings while ensuring that the error will never exceed the maximum error threshold. This approach also allows restoring of the original error-free circuit if no matching workload distribution is found. The proposed method also leverages the ability of High-Level Synthesis (HLS) to automatically generate circuits with different properties by setting different synthesis constraints to maximize the available timing slack and, hence, maximize the power savings. Experimental results show that our proposed method works very well, saving on average 47.08% of power as compared to the exact output circuit and 20.25% more than a traditional approximation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.