Abstract

Available online Edge data centers are designed to meet the stringent QoE requirements of delay-sensitive and computationally intensive services in Content Delivery Network (CDN) and 5G networks. The primary purpose of this paper was to formulate and solve the problem of optimizing many control variables jointly: (i) what contents to store by taking into consideration edge capacity, and (ii) what contents to recommend to each Internet of Everything (IoE) item, based on identity and access management (IAM). In reactive caching policy, we proposed a new Two-Factor Authentication (2FA) scheme founded upon the Elliptic Curve Cryptography (ECC) and one-way hash function for access control. More interestingly, we use Non-negative Matrix Factorization (NMF), Fuzzy C-Means (FCM), Random Forest (RF) and Pearson Correlation (PC) to improve the accuracy and latency of traditional data filtering models. The intelligent recommendation engine we propose is designed to be implemented by cloud for caching and prefetching contents at the edge. The experimental results validate the theoretical guarantees of the proposed solution and its ability to achieve significant performance gains compared to common baseline models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.