Abstract
Global agriculture is facing growing challenges at the nexus of interconnected food, energy and water systems, including but not limited to persistent food insecurity and diet-related diseases; growing demands for energy and consequences for climate change; and declining water resources, water pollution, floods and droughts. Further, soil degradation and biodiversity loss are both triggers for and consequences of these problems. In this commentary, we argue that expanding agroecological principles, tools, and technologies and enhancing biological diversity can address these challenges and achieve better socioeconomic outcomes. Agroecology is often described as multi- or transdiscplinary, and applies ecological principles to the design and management of agricultural systems through scientific research, practice and collective action. While agroecology has roots in the study of food systems, agricultural land use has many direct and indirect linkages to water and energy systems that could benefit from agroecological insights, including use of water resources and the development of bio-based energy products. Although opportunities from the science and the practice of agroecology transcend national boundaries, obstacles to widespread adoption vary. In this article, we therefore focus on the United States, where key barriers include a shortage of research funds, limited supporting infrastructure, and cultural obstacles. Nevertheless, simply scaling up current models of agricultural production and land use practices will not solve many of the issues specific to food related challenges nor would such an approach address related energy and water concerns. We conclude that a first critical step to discovering solutions at the food, energy, water nexus will be to move past yield as a sole measure of success in agricultural systems, and call for more holistic considerations of the co-benefits and tradeoffs of different agricultural management options, particularly as they relate to environmental and equity outcomes.
Highlights
New impetus for interdisciplinary research on food, energy, and water systems is emerging, driven by an increasing recognition that focus on gains in one specific area can inadvertently lead to losses in others, as well as by concerns about population growth, climate change, water resources, and deficiencies of the current food and agricultural system
We argue that expanding agroecological principles, tools, and technologies and enhancing biological diversity can address these challenges and achieve better socioeconomic outcomes
We propose that the field of agroecology is poised to effectively address these challenges, but we highlight several obstacles that may need to be overcome to enable broader application of agroecological solutions
Summary
Follow this and additional works at: https://digitalcommons.unl.edu/agronomyfacpub Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences. DeLonge, Marcia and Basche, Andrea D., "Leveraging agroecology for solutions in food, energy, and water" (2017). This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agronomy & Horticulture -Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. DeLonge, M and Basche, A 2017 Leveraging agroecology for solutions in food, energy, and water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.